Abstract

The memory effect in time-dependent density functional theory (TDDFT) is important in simulating many time-dependent physical processes, and its implementation in real time has been a longstanding challenge, thus limiting most of TDDFT applications to either adiabatic or linear-response regime. In this paper, we conduct the non-adiabatic calculations for a one-dimensional two-electron Helium model in a triplet state using the recently formulated Sturm-Liouville-type time-local equation for the time-dependent optimized effective potential (TDOEP) with the exact exchange functional, and the results agree with the exact time-dependent Schrodinger equation solutions. It is also found that the time-dependent dipole moment and probability density calculated from the TDOEP approach are more accurate than those from the adiabatic time-dependent Krieger-Li-Iafrate (TDKLI) approximation and the adiabatic local spin density approximation. Specifically, the non-adiabatic and memory-dependent terms in the time-local TDOEP equation correctly describe the time-dependent structure of exchange-correlation potential and yield the probability density evolution. These findings should provide important insights toward future studies on memory effects in TDDFT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call