Abstract
We study (1 + 1)-dimensional integrable soliton equations with time-dependent defects located at x = c(t), where c(t) is a function of class C 1. We define the defect condition as a Bäcklund transformation evaluated at x = c(t) in space rather than over the full line. We show that such a defect condition does not spoil the integrability of the system. We also study soliton solutions that can meet the defect for the system. An interesting discovery is that the defect system admits peaked soliton solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings. Mathematical, physical, and engineering sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.