Abstract
It seems fairly well established that in the early phase of smooth muscle contraction cross bridges cycle at a relatively rapid rate. Later on these are replaced by very slowly cycling cross bridges or "latch bridges," operating with high economy. We describe a method to identify the time at which the transition occurs. By abruptly applying a light afterload at varying time intervals after stimulation of a canine tracheal smooth muscle, a point in time could be identified when cross-bridge cycling slowed. This was called the transition time. Because this transition was load dependent, the study was repeated with the preload abruptly reduced to zero. This permitted analysis of data in terms of cross-bridge activity. Maximum zero load velocity (Vo) of the contractile machinery was plotted against time and yielded a biphasic curve. The descending limb of the curve was fitted by a curve of the form Vo(t) = alpha e-K1t + beta e-K2t; K1 was almost three times greater than K2. We speculate that the faster rate constant represented activity of the early rapidly cycling cross bridges, and the slower constant reflected cycling rates in the latch state. These results are consistent with the latch bridge hypothesis put forward by Dillon et al. and enable us to provide a first approximation of the relative velocities of the two types of cross bridges.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have