Abstract

We numerically study the behaviour of entanglement entropy for a free scalar field on the noncommutative (“fuzzy”) sphere after a mass quench. It is known that the entanglement entropy before a quench violates the usual area law due to the non-local nature of the theory. By comparing our results to the ordinary sphere, we find results that, despite this non-locality, are compatible with entanglement being spread by ballistic propagation of entangled quasi-particles at a speed no greater than the speed of light. However, we also find that, when the pre-quench mass is much larger than the inverse of the short-distance cutoff of the fuzzy sphere (a regime with no commutative analogue), the entanglement entropy spreads faster than allowed by a local model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.