Abstract
We numerically calculate entanglement entropy and mutual information for a massive free scalar field on commutative (ordinary) and noncommutative (fuzzy) spheres. We regularize the theory on the commutative geometry by discretizing the polar coordinate, whereas the theory on the noncommutative geometry naturally posseses a finite and adjustable number of degrees of freedom. Our results show that the UV-divergent part of the entanglement entropy on a fuzzy sphere does not follow an area law, while the entanglement entropy on a commutative sphere does. Nonetheless, we find that mutual information (which is UV-finite) is the same in both theories. This suggests that nonlocality at short distances does not affect quantum correlations over large distances in a free field theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.