Abstract

Physiological networks, as observed in the human organism, involve multi-component systems with feedback loops that contribute to self-regulation. Physiological phenomena accompanied by time-delay effects may lead to oscillatory and even chaotic dynamics in their behaviors. Analogous dynamics are found in semiconductor lasers subjected to delayed optical feedback, where the dynamics typically include a time-delay signature. In many applications of semiconductor lasers, the suppression of the time-delay signature is essential, and hence several approaches have been adopted for that purpose. In this paper, experimental results are presented wherein photonic filters utilized in order to suppress time-delay signatures in semiconductor lasers subjected to delayed optical feedback effects. Two types of semiconductor lasers are used: discrete-mode semiconductor lasers and vertical-cavity surface-emitting lasers (VCSELs). It is shown that with the use of photonic filters, a complete suppression of the time-delay signature may be affected in discrete-mode semiconductor lasers, but a remnant of the signature persists in VCSELs. These results contribute to the broader understanding of time-delay effects in complex systems. The exploration of photonic filters as a means to suppress time-delay signatures opens avenues for potential applications in diverse fields, extending the interdisciplinary nature of this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call