Abstract
The concept of multifunctionality has enabled reservoir computers (RCs), a type of dynamical system that is typically realized as an artificial neural network, to reconstruct multiple attractors simultaneously using the same set of trained weights. However, there are many additional phenomena that arise when training a RC to reconstruct more than one attractor. Previous studies have found that in certain cases, if the RC fails to reconstruct a coexistence of attractors, then it exhibits a form of metastability, whereby, without any external input, the state of the RC switches between different modes of behavior that resemble the properties of the attractors it failed to reconstruct. In this paper, we explore the origins of these switching dynamics in a paradigmatic setting via the "seeing double" problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.