Abstract

Chronic ethanol consumption for 40 weeks in adult rats results in dilation of the extensive smooth endoplasmic reticulum (SER), a major component of the calcium homeostatic system within Purkinje neuron (PN) dendrites. The aim of the present study was to determine whether chronic ethanol consumption results in alterations of the sarco/endoplasmic reticulum Ca(2+) ATPase pump (SERCA) on the SER membrane of PN dendrites. The density of calreticulin, a calcium chaperone, was also investigated in the PN along with balancing ability. Ninety 8-month-old rats were exposed to rat chow, the AIN-93 M liquid control or ethanol diets (30/diet) for a duration of 10, 20 or 40 weeks (30/duration). Age changes relative to the rat chow controls were assessed with 3-month-old control rats (n = 10). Balance was assessed prior to euthanasia. Quantitative immunocytochemistry was used to determine the density of SERCA 2b + dendrites and calreticulin + PN soma and nuclei. Molecular layer volumes were also determined. Following 40 weeks of ethanol treatment, there were ethanol-induced decreases in SERCA 2b densities within the dendritic arbor and decreased balancing ability on the more difficult round rod balance test. There were no ethanol-induced changes in calreticulin densities. It can be concluded that ethanol-induced decreases in the SERCA pump accompany SER dilation and contribute to previously reported ethanol-induced dendritic regression in PN. Ethanol-induced changes in balance also occurred. Chronic ethanol consumption does not alter calreticulin expression in PN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.