Abstract

Nanosecond-pulse surface dielectric barrier discharge is a promising method used for airflow control application. In our letter, atmospheric-pressure plasmas in open air are produced in a configuration of discharge actuators by repetitive nanosecond pulses. The electrical parameters including applied voltage, total discharge current, and transported charge are measured and analysed, especially it is aimed at the time behaviour of the total discharge current. Experimental results show that the total discharge current pulse includes two obvious spikes during the rise time of the applied pulse voltage. According to the simulation, it is concluded that the first current spike is due to the discharge propagation in the form of wave ionization and displacement current. The second current spike is caused by the repeated re-ignition of the surface dielectric barrier discharge on the area covered previously by the wave ionization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call