Abstract

We show by numerical simulations that the presence of nonlinear velocity-dependent friction forces can induce a finite net drift in the stochastic motion of a particle in contact with an equilibrium thermal bath and in an asymmetric periodic spatial potential. In particular, we study the Kramers equation for a particle subjected to Coulomb friction, namely a constant force acting in the direction opposite to the particle's velocity. We characterize the nonequilibrium irreversible dynamics by studying the generalized fluctuation-dissipation relation for this ratchet model driven by Coulomb friction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.