Abstract
Abstract Based on the three-step theory of high-order harmonic generation, the harmonic cutoff is very sensitive to the few-cycle laser waveform in both time and space regions. Therefore, in this paper, we propose the method to control the harmonic cutoff and to produce the water window attosecond pulse through the optimization of time and space waveform. It is found that, in the time region, by properly choosing the delay and phase of the few-cycle two-color pulse, not only the harmonic intensity is enhanced, but also the quantum path of the harmonic emission can be controlled. Further, with the introduction of the 3rd pulse (i.e., the infrared pulse or the unipolar pulse), the harmonic cutoff from the single harmonic emission peak can be extended, showing a water window harmonic plateau. In the space region, by using the positive spatial inhomogeneous effect, the harmonic cutoff from the basic two-color waveform can also be extended, which leads to a water window spectral continuum. Finally, by Fourier transformation of harmonics during the water window region, the ultrashort single 29 as pulses can be obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.