Abstract

The aim of this paper is to show that, for a linear second-order hyperbolic equation discretized by the backward Euler scheme in time and continuous piecewise affine finite elements in space, the adaptation of the time steps can be combined with spatial mesh adaptivity in an optimal way. We derive a priori and a posteriori error estimates which admit, as much as it is possible, the decoupling of the errors committed in the temporal and spatial discretizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.