Abstract
Hepatic glucose metabolism serves dual purposes: maintaining glucose homeostasis and converting glucose into energy sources; however, the underlying mechanisms are unclear. We quantitatively measured liver metabolites, gene expression, and phosphorylated insulin signaling molecules in mice orally administered varying doses of glucose, and constructed a transomic network. Rapid phosphorylation of insulin signaling molecules in response to glucose intake was observed, in contrast to the more gradual changes in gene expression. Glycolytic and gluconeogenic metabolites and expression of genes involved in glucose metabolism including glucose-6-phosphate, G6pc, and Pck1, demonstrated high glucose dose sensitivity. Whereas, glucokinase expression and glycogen accumulation showed low glucose dose sensitivity. During the early phase after glucose intake, metabolic flux was geared towards glucose homeostasis regardless of the glucose dose but shifted towards energy conversion during the late phase at higher glucose doses. Our research provides a comprehensive view of time- and dose-dependent selective glucose metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.