Abstract

The perfusion of forearm skin with blood was studied by the method of laser Doppler flowmetry (LDF) in 94 healthy volunteers. We studied the reaction of the microvascular bed to the transient ischemia, which was initiated by the forearm occlusion. After occlusion, we registered, on average, a 4-fold increase of skin blood perfusion as compared to the level of this parameter at rest. In the study, we also analyzed changes of the oscillatory components of LDF signals during post-occlusive reactive hyperemia; these components were revealed with the adaptive time–amplitude wavelet analysis. It was found that the time needed for oscillations to reach their maximal amplitude is different for each of the frequency intervals examined. After occlusion, a statistically significant rise of the amplitude of blood flow oscillations was revealed—for the frequency intervals corresponding to the cardiac (0.6–2Hz), respiratory (0.145–0.6Hz), myogenic (0.052–0.145Hz), sympathetic (0.021–0.052Hz), and endothelial (0.0095–0.021Hz) activity (a more than 11-, 8-, 6-, 3-, and 6-fold increase, respectively, as compared to the state of rest). The method applied here for the analysis of oscillatory components of LDF signals can, therefore, be used to study the dynamics of oscillations of peripheral blood flow under various functional tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.