Abstract

Age-related changes in peripheral microcirculation were studied using laser Doppler flowmetry in 60 apparently healthy subjects. The response of microcirculation to short-term ischemia was studied using the occlusion test. Changes in the amplitude of the peripheral blood flow oscillations were determined using time-amplitude analysis based on continuous adaptive wavelet filtration. The oscillation amplitude in the frequency range of the heart rate was found to reach the maximum with a delay after the removal of the occlusion, whereas in the range of the respiratory rhythm, no delay was observed. The hyperemic response to short-term ischemia is assumed to develop under the predominant influence of the arterial-arteriolar component, whereas the dynamics of amplitude oscillations in the range of the respiratory rhythm is a result of the devastation of the venular component after removal of occlusion. In response to short-term ischemia, the maximum oscillation amplitudes of myogenic, neurogenic, and endothelial rhythms decreased with age, which demonstrates the restriction of the regulatory control of the peripheral blood flow by the corresponding systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.