Abstract

Unmanned aerial vehicles (UAVs) have attracted great research attention due to their flexibility. In this paper, the use of UAVs in wireless sensor networks as an energy transmitter and a data collector is investigated. The UAV is first charged from a charging station, such as a base station (BS), before it flies to the sensors for data collection. Upon arrival, the UAV first charges the sensors via wireless power transfer (WPT) in the downlink, followed by data transmission from the sensors in the uplink. After that, the UAV flies back to the BS to offload data to the BS. We aim to maximize the amount of data offloaded to the BS by allocating optimal time slots to different tasks in this process, given a fixed total time. The maximization is solved in two steps as two convex optimization problems. In the first step, the time allocation between WPT to sensors and data collection from sensors is optimized. In the second step, the time allocation of BS charging, the total time in the first step, and BS data offloading is optimized. Unlike the previous works, our study takes into account the charging process from the BS to the UAV, the propulsion consumption at the UAV and the data offloading process to the BS. Both distance-dependent path loss and small-scale fading are considered. Numerical results show that the optimal time allocation can maximize the amount of data at the BS without wasting any time and energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.