Abstract
An unmanned aerial vehicle (UAV) can be utilized as a flying data collector and wireless power source in wireless charging sensor networks (WCSNs). Different from conventional studies that focused on maximizing the efficiency of wireless power transfer (WPT) for UAV route design, in this article, we maximize the lifetime of WCSNs by considering sensor energy consumption and energy harvesting simultaneously. We consider simultaneous wireless information and power transfer (SWIFT), where data collection capability guarantees power leftover for UAV to complete its round-trip flight. Our objective is to jointly optimize the UAV hovering location and duration to maximize the minimum energy of sensors after data transmission and energy harvesting under data collection and UAV energy consumption constraints. To tackle this nonconvex optimization problem, we first assume that the UAV hovering location for each sensor is fixed and optimize UAV hovering duration by the Lagrange multiplier method. Next, for each UAV hovering location, we propose a geometry-based update algorithm, which can be used to find initial feasible UAV routes to the problem. Last, a near-optimal UAV route is determined by adjusting the initial feasible UAV route iteratively, where UAV hovering locations and duration are updated at each iteration. The numerical results are provided to validate the performance of our proposed algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.