Abstract

The present study deals with the innovation and the possibilities of improving the design solution of a frame connection for two selected types of fasteners. All specimens were made of glued laminated timber. Dowel-type mechanical fasteners, a combination of bolts and dowels, and full-threaded screws were used for the connection. The main goal of this research was to replace the typical solution (common dowel-type fasteners) with a more modern, faster, and easier solution in order to improve the load-carrying capacity, ductility, and deformation capacity of this type of frame connection. This article also aimed to provide a detailed evaluation of the mechanical properties of the used glued laminated timber and fasteners in order to comprehensively evaluate the research task. For the design solution, a frame connection created from a system of two struts and a partition was chosen as the basis of the experimental program. Dowel-type mechanical fasteners, as well as combinations of bolts and dowels, were used for the connection; however, in addition to these standardly used mechanical fasteners, full-threaded screws were used. The article describes the use of static destructive testing to determine the ductility of the connection, considering different variations in the strengthening of the individual segments of the mentioned connection means. In the first variation, the individual components of the frame were not reinforced in any way. In the second, the crossbar was reinforced with two full-threaded bolts. In the third, the webs and the crossbar were reinforced with two full-threaded bolts. In the article, these ductility values were compared with each other and the procedure was set by the currently valid standard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.