Abstract
This paper continues the investigation of tiling problems via formal languages, which was begun in papers by Merlini, Sprugnoli, and Verri. Those authors showed that certain tiling problems could be encoded by regular languages, which lead automatically to generating functions and other combinatorial information on tilings. We introduce a method of simplifying the DFA’s recognizing these language, which leads to bijective proofs of certain tiling identities. We apply these ideas to some other tiling problems, including three-dimensional tilings and tilings with triangles and rhombi. We also study graph-theoretic variations of these tiling problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.