Abstract
PurposeThe purpose of this study is to designed a robot odometry based on three dimensional (3D) laser point cloud data, inertial measurement unit (IMU) data and real-time kinematic (RTK) data in underground spatial features and gravity fluctuations environment. This method improves the mapping accuracy in two types of underground space: multi-layer space and large-scale scenarios.Design/methodology/approachAn IMU–Laser–RTK fusion mapping algorithm based on Iterative Kalman Filter was proposed, and the observation equation and Jacobian matrix were derived. Aiming at the problem of inaccurate gravity estimation, the optimization of gravity is transformed into the optimization of SO(3), which avoids the problem of gravity over-parameterization.FindingsCompared with the optimization method, the computational cost is reduced. Without relying on the wheel speed odometer, the robot synchronization localization and 3D environment modeling for multi-layer space are realized. The performance of the proposed algorithm is tested and compared in two types of underground space, and the robustness and accuracy in multi-layer space and large-scale scenarios are verified. The results show that the root mean square error of the proposed algorithm is 0.061 m, which achieves higher accuracy than other algorithms.Originality/valueBased on the problem of large loop and low feature scale, this algorithm can better complete the map loop and self-positioning, and its root mean square error is more than double compared with other methods. The method proposed in this paper can better complete the autonomous positioning of the robot in the underground space with hierarchical feature degradation, and at the same time, an accurate 3D map can be constructed for subsequent research.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have