Abstract
IntroductionAcute renal failure after cardiac surgery increases in-hospital mortality. We evaluated the effect of intra- and postoperative tight control of blood glucose levels on renal function after cardiac surgery based on the Risk, Injury, Failure, Loss, and End-stage kidney failure (RIFLE) criteria, and on the need for acute postoperative dialysis.MethodsWe retrospectively analyzed two groups of consecutive patients undergoing cardiac surgery with cardiopulmonary bypass between August 2004 and June 2006. In the first group, no tight glycemic control was implemented (Control, n = 305). Insulin therapy was initiated at blood glucose levels > 150 mg/dL. In the group with tight glycemic control (Insulin, n = 745), intra- and postoperative blood glucose levels were targeted between 80 to 110 mg/dL, using the Aalst Glycemia Insulin Protocol. Postoperative renal impairment or failure was evaluated with the RIFLE score, based on serum creatinine, glomerular filtration rate and/or urinary output. We used the Cleveland Clinic Severity Score to compare the predicted vs observed incidence of acute postoperative dialysis between groups.ResultsMean blood glucose levels in the Insulin group were lower compared to the Control group from rewarming on cardiopulmonary bypass onwards until ICU discharge (p < 0.0001). Median ICU stay was 2 days in both groups. In non-diabetics, strict perioperative blood glucose control was associated with a reduced incidence of renal impairment (p = 0.01) and failure (p = 0.02) scoring according to RIFLE criteria, as well as a reduced incidence of acute postoperative dialysis (from 3.9% in Control to 0.7% in Insulin; p < 0.01). The 30-day mortality was lower in the Insulin than in the Control group (1.2% vs 3.6%; p = 0.02), representing a 70% decrease in non-diabetics (p < 0.05) and 56.1% in diabetics (not significant). The observed overall incidence of acute postoperative dialysis was adequately predicted by the Cleveland Clinic Severity Score in the Control group (p = 0.6), but was lower than predicted in the Insulin group (1.2% vs 3%, p = 0.03).ConclusionsIn non-diabetic patients, tight perioperative blood glucose control is associated with a significant reduction in postoperative renal impairment and failure after cardiac surgery according to the RIFLE criteria. In non-diabetics, tight blood glucose control was associated with a decreased need for postoperative dialysis, as well as 30-day mortality, despite of a relatively short ICU stay.
Highlights
Acute renal failure after cardiac surgery increases in-hospital mortality
We evaluated the effect of intra- and postoperative tight control of blood glucose levels on renal function after cardiac surgery based on the Risk, Injury, Failure, Loss, and End-stage kidney failure (RIFLE) criteria, and on the need for acute postoperative dialysis
Strict perioperative blood glucose control was associated with a reduced incidence of renal impairment (p = 0.01) and failure (p = 0.02) scoring according to RIFLE criteria, as well as a reduced incidence of acute postoperative dialysis
Summary
We evaluated the effect of intra- and postoperative tight control of blood glucose levels on renal function after cardiac surgery based on the Risk, Injury, Failure, Loss, and End-stage kidney failure (RIFLE) criteria, and on the need for acute postoperative dialysis. Tight glycemic control in the ICU is reported to improve morbidity, mortality and outcome in cardiac surgical patients and to reduce the need for postoperative renal replacement therapy by up to 40% [4,5,6]. In cardiac surgery poor intraoperative glycemic control in diabetics is associated with a sevenfold increase in postoperative renal failure, whereas severe hyperglycemia during cardiopulmonary bypass (CPB) in non-diabetics is associated with acute renal failure requiring dialysis [3,4,5,6]. Recent observations indicate that hyperglycemia-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells and stimulates renal oxygen consumption by increased endothelial nitric oxide synthase [8,9]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have