Abstract

Present work investigates the potential of chitosan nanoparticles, formulated by the ionic gelation with tripolyphosphate (TPP), to open the cellular tight junctions and in doing so, improve the permeability of model macromolecules. A comparison is made with chitosan solution at equivalent concentrations. Initial work assessed cytotoxicity (through MTS and LDH assays) of chitosan nanoparticles and solutions on Calu-3 cells. Subsequently, a concentration of chitosan nanoparticles and solution exhibiting minimal toxicity was used to investigate the effect on TEER and macromolecular permeability across filter-cultured Calu-3 monolayer. Chitosan nanoparticles and solution were also tested for their effect on the distribution of the tight junction protein, zonnula occludens-1 (ZO-1). Chitosan nanoparticles produced a sharp and reversible decrease in TEER and increased the permeability of two FITC-dextrans (FDs), FD4 (MW 4 kDa) and FD10 (MW 10 kDa), with effects of a similar magnitude to chitosan solution. Chitosan nanoparticles produced changes in ZO-1 distribution similar to chitosan solution, indicating a tight junction effect. While there was no improvement in permeability with chitosan nanoparticles compared to solution, nanoparticles provide the potential for drug incorporation, and hence the possibility for providing controlled drug release and protection from enzymatic degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.