Abstract

We derive distance-dependent estimators for two-center and three-center electron repulsion integrals over a short-range Coulomb potential, erfc(ωr12)/r12. These estimators are much tighter than the ones based on the Schwarz inequality and can be viewed as a complement to the distance-dependent estimators for four-center short-range Coulomb integrals and for two-center and three-center full Coulomb integrals previously reported. Because the short-range Coulomb potential is commonly used in solid-state calculations, including those with the Heyd-Scuseria-Ernzerhof functional and with our recently introduced range-separated periodic Gaussian density fitting, we test our estimators on a diverse set of periodic systems using a wide range of the range-separation parameter ω. These tests demonstrate the robust tightness of our estimators, which are then used with integral screening to calculate periodic three-center short-range Coulomb integrals with linear scaling in system size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.