Abstract

Combining unique high-altitude aircraft measurements and detailed regional model simulations, we show that in-plant biochemistry plays a central but previously unidentified role in fine particulate-forming processes and atmosphere–biosphere–climate interactions over the Amazon rainforest. Isoprene epoxydiol secondary organic aerosols (IEPOX-SOA) are key components of sub-micrometer aerosol particle mass throughout the troposphere over the Amazon rainforest and are traditionally thought to form by multiphase chemical pathways. Here, we show that these pathways are strongly inhibited by the solid thermodynamic phase state of aerosol particles and lack of particle and cloud liquid water in the upper troposphere. Strong diffusion limitations within organic aerosol coatings prevailing at low temperatures and low relative humidity in the upper troposphere strongly inhibit the reactive uptake of IEPOX to inorganic aerosols. We find that direct emissions of 2-methyltetrol gases formed by in-plant biochemical oxidation and/or oxidation of deposited IEPOX gases on the surfaces of soils and leaves and their transport by cloud updrafts followed by their condensation at low temperatures could explain over 90% of the IEPOX-SOA mass concentrations in the upper troposphere. Our simulations indicate that even near the surface, direct emissions of 2-methyltetrol gases represent a ubiquitous, but previously unaccounted for, source of IEPOX-SOA. Our results provide compelling evidence for new pathways related to land surface–aerosol–cloud interactions that have not been considered previously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.