Abstract

While crop and grassland usage continues to increase, the full diversity of plant-specific volatile organic compounds (VOCs) emitted from these ecosystems, including their implications for atmospheric chemistry and carbon cycling, remains poorly understood. It is particularly important to investigate VOCs in the context of potential biofuels: aside from the implications of large-scale land use, harvest may shift both the flux and speciation of emitted VOCs. To this point, we evaluate the diversity of VOCs emitted both pre and postharvest from "Alkar" tall wheatgrass (Thinopyrum ponticum), a candidate biofuel that exhibits greater tolerance to frost and saline land compared to other grass varieties. Mature plants grown under field conditions (n = 6) were sampled for VOCs both pre- and postharvest (October 2022). Via hierarchical clustering of emitted VOCs from each plant, we observe distinct "volatilomes" (diversity of VOCs) specific to the pre- and postharvest conditions despite plant-to-plant variability. In total, 50 VOCs were found to be unique to the postharvest tall wheatgrass volatilome, and these unique VOCs constituted a significant portion (26%) of total postharvest signal. While green leaf volatiles (GLVs) dominate the speciation of postharvest emissions (e.g., 54% of unique postharvest VOC signal was due to 1-penten-3-ol), we demonstrate novel postharvest VOCs from tall wheatgrass that are under characterized in the context of carbon cycling and atmospheric chemistry (e.g., 3-octanone). Continuing evaluations will quantitatively investigate tall wheatgrass VOC fluxes, better informing the feasibility and environmental impact of tall wheatgrass as a biofuel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.