Abstract

The intense activity at the south pole of Enceladus hints at an internal water reservoir. However, there is no direct evidence of liquid water at present and its long-term stability in the interior remains problematic. By modeling heat production and transfer in the ice shell in a spherical geometry, we show that tidal heating naturally leads to a concentration of convective hot upwellings in the south polar region, favoring the preservation of liquid water at depth. We show that large volumes of water are produced within the ice shell at the south pole during periods of elevated orbital eccentricity (3–5 times the present-day value). Strong lateral variations in the melt production and crystallization rates result in stress concentration in the south polar region, thus providing an explanation for the tectonic activity observed today. We predict that an internal ocean may be sustained over the long term as the consequence of repeated periods with elevated orbital eccentricity, leading to episodic melting and resurfacing events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.