Abstract
We present a phenomenological description of the properties of tidal tails forming around dwarf galaxies orbiting the Milky Way. For this purpose we use collisionless N-body simulations of dwarfs initially composed of a disc embedded in an NFW dark matter halo. The dwarfs are placed on seven orbits around the Milky Way like host, differing in size and eccentricity, and their evolution is followed for 10 Gyr. In addition to the well-studied morphological and dynamical transformation of the dwarf's main body, the tidal stripping causes them to lose a substantial fraction of mass both in dark matter and in stars which form pronounced tidal tails. We focus on the properties of the stellar component of the tidal tails thus formed. We first discuss the break radii in the stellar density profile defining the transition to tidal tails as the radii where the profile becomes shallower and relate them to the classically defined tidal radii. We then calculate the relative density and velocity of the tails at a few break radii as a function of the orbital phase. Next, we measure the orientation of the tails with respect to an observer placed at the centre of the Milky Way. The tails are perpendicular to this line of sight only for a short period of time near the pericentre. For most of the time the angles between the tails and this line of sight are low, with orbit-averaged medians below 42° for all, even the almost circular orbit. The median angle is typically lower while the maximum relative density higher for more eccentric orbits. The combined effects of relative density and orientation of the tails suggest that they should be easiest to detect for dwarf galaxies soon after their pericentre passage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.