Abstract
Halo stars with unusually high radial velocity (hypervelocity stars, or HVS) are thought to be stars unbound to the Milky Way that originate from the gravitational interaction of stellar systems with the supermassive black hole at the Galactic center. We examine the latest HVS compilation and find peculiarities that are unexpected in this black hole-ejection scenario. For example, a large fraction of HVS cluster around the constellation of Leo and share a common travel time of $\sim 100$-200 Myr. Furthermore, their velocities are not really extreme if, as suggested by recent galaxy formation models, the Milky Way is embedded within a $2.5\times 10^{12} h^{-1} M_{\odot}$ dark halo with virial velocity of $\sim 220$ km/s. In this case, the escape velocity at $\sim 50$ kpc would be $\sim 600$ km/s and very few HVS would be truly unbound. We use numerical simulations to show that disrupting dwarf galaxies may contribute halo stars with velocities up to and sometimes exceeding the nominal escape speed of the system. These stars are arranged in a thinly-collimated outgoing ``tidal tail'' stripped from the dwarf during its latest pericentric passage. We speculate that some HVS may therefore be tidal debris from a dwarf recently disrupted near the center of the Galaxy. In this interpretation, the angular clustering of HVS results because from our perspective the tail is seen nearly ``end on'', whereas the common travel time simply reflects the fact that these stars were stripped simultaneously from the dwarf during a single pericentric passage. This proposal is eminently falsifiable, since it makes a number of predictions that are distinct from the black-hole ejection mechanism and that should be testable with improved HVS datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.