Abstract

When dark matter halos are accreted by massive host clusters, strong gravitational tidal forces begin stripping mass from the accreted subhalos. This stripping eventually removes all mass beyond a subhalo's tidal radius, but the unbound mass remains in the vicinity of the satellite for at least a dynamical time t_dyn. The N-body subhalo study of Chamberlain et al. verified this picture and pointed out a useful observational consequence: measurements of subhalo correlations beyond the tidal radius are sensitive to the infall time, t_infall, of the subhalo onto its host. We perform this cross-correlation measurement using ~ 160,000 red satellite galaxies in SDSS redMaPPer clusters and find evidence that subhalo correlations do persist well beyond the tidal radius, suggesting that many of the observed satellites fell into their current host less than a dynamical time ago, t_infall < t_dyn. Combined with estimated dynamical times t_dyn ~ 3-5 Gyr and SED fitting results for the time at which satellites stopped forming stars, t_quench ~ 6 Gyr, we infer that for a significant fraction of the satellites, star formation quenched before those satellites entered their current hosts. The result holds for red satellites over a large range of cluster-centric distances 0.1 - 0.6 Mpc/h. We discuss the implications of this result for models of galaxy formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call