Abstract

The inhomogeneous distribution of co-crystallized analytes and the traditional organic matrices as well as the intensive background interference in the low molecular weight range hinder the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in the analysis of small-molecular compounds. New two-dimensional material MXene (e.g., Ti3C2) exerts better hydrophilicity, homogeneity and repeatability, and higher laser desorption efficiency, as well as less background interference than traditional organic matrices and other nanomaterial matrices such as titanium oxide, graphene, and gold nanostructures. This study was aimed to design Ti3C2 matrix with abundant hydroxyls on its surface, enhance the stability of this hydroxyl-rich Ti3C2 (Ti3C2(OH)x), and evaluate the analytical performances of Ti3C2(OH)x-assisted laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) for small-molecular natural compounds in complex samples. The developed Ti3C2(OH)x showed the distinct advantages such as minimum background interference, high peak intensity (~105), high salt (0.6 M) and protein (0.5 mg/mL) tolerance, good repeatability (relative standard deviation<20%), and good stability after eight months of storage. Ti3C2(OH)x-assisted LDI-TOF-MS analysis could be used to rapidly identify Artemisia annua (a world-famous traditional Chinese medicine) and quantify the contents of the main chemical ingredients (oxymatrine (OXY) and matrine) of Compound Kushen Injection (CKI). Interestingly, the content of OXY in CKI could be accurately quantified by Ti3C2(OH)x-assisted LDI-TOF-MS, and there was a good linear relationship (R2 -0.9929), a low limit of detection (400 pg), and a low limit of quantification (600 pg) of OXY. Taken together, the rapid and accurate analysis of small-molecular natural compounds in complicated samples could be achieved by the Ti3C2(OH)x-assisted LDI-TOF-MS analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.