Abstract

In this study, we introduced the method for the growth of titanium molybdenum oxide (TMO) nanotubes directly from metallic precursor solid state solution and provided their structural and chemical characterization. Precursor films with content of molybdenum from 32 to 82 at% were prepared using co-deposition magnetron sputtering. The optimization of deposition parameters allowed for the growth of a continuous nanotube array with a length up to 700 nm ± 10% by anodic oxidation. Scanning electron microscopy (SEM) combined with energy-dispersive spectroscopy (EDS) revealed nanotube formation with Ti1−xMoxO2 composition, where x can reach the value of 0.5. Scanning transmission electron microscopy combined with EDS (STEM-EDS) confirmed the incorporation of Mo into the TiO2 lattice and uniform elemental distribution across the nanotube at the submicron level. The nanobeam electron diffraction (NBD) and X-ray diffraction analyses (XRD) did not show any notable crystal phase formation for the titanium molybdenum oxide phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call