Abstract
Undoped and Ti-doped ZnO films were deposited using radio frequency reactive magnetron sputtering at various sputtering powers. The crystal structures, surface morphology, chemical state and optical properties in Ti-doped ZnO films were systematically investigated via X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ultraviolet visible (UV–Vis) spectrophotometer. Results indicated that titanium atoms may replace zinc atomic sites substitutionally or incorporate interstitially in the hexagonal lattices, and a moderate quantity of Ti atoms exist in the form of sharing the oxygen with Zn atoms and hence improve the (002) orientation. The photoluminescence (PL) spectra of the Ti-doped ZnO films contain one main blue peak, whose intensity increased with the increase of sputtering power. Our results indicated that a higher compressive stress in Ti-doped ZnO films results in a lower optical band gap and a lower transmittance, and various Ti impurities can affect the concentration of the interstitial Zn and O vacancies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have