Abstract

In this study, nanoparticles of ferroelectric BiFeO3 (BFO) doped with 0, 5, and 10 mol% Ti were synthesized by an ethanol-based solvothermal method, and their densification behavior was investigated. The nanoparticles were densified via a normal sintering process at a low temperature of about 600 °C, resulting in dense bulk ceramics of undoped and Ti-doped BFO with a relative density of over 90%. The weight loss due to bismuth evaporation during sintering was suppressed below 0.6% because of the low sintering temperature. The crystal structure analysis of the resulting ceramics confirmed the incorporation of Ti ions into the Fe3+ site of BFO. The results of dielectric and X-ray photoelectron spectroscopies showed that Ti doping effectively decreased the concentration of Fe4+ in the ceramics, leading to suppression of the extrinsic dielectric responses due to the Maxwell–Wagner effect and the hopping motion of the localized holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call