Abstract

Fetal renin-angiotensin system (RAS) activity is developmentally regulated, increasing in late gestation toward term. At the same time, fetal hemodynamic parameters change, with blood pressure increasing and heart rate decreasing. During this period, fetal plasma thyroid hormone concentrations also increase significantly. In this study we utilized the technique of thyroidectomy (TX), which removes thyroid hormone from the circulation, to investigate the importance of thyroid hormone on the developmental changes in the RAS (in plasma, kidney, heart, and lung) and hemodynamic regulation in fetal sheep. TX was performed at 120 days of gestational age (dGA), and control fetuses were sham operated. Immediately before necropsy ( approximately 137 dGA), fetuses were infused with isoproterenol and the hemodynamic responses were noted. TX significantly decreased plasma thyroid hormone concentrations and renal renin mRNA and renal active renin levels but did not change fetal plasma active renin levels. TX decreased both angiotensin II receptor subtype 1 (AT1) mRNA and protein levels in kidney and lung but not in the left ventricle. TX also was associated with increased ANG II receptor subtype 2 (AT2) mRNA and protein at the 44-kDa band in kidney, whereas AT2 protein was decreased at the 78-kDa level in kidney and lung tissue only. TX fetuses had significantly lower basal mean arterial blood pressures (MAP) and heart rates than controls. Isoproterenol infusion decreased MAP in TX fetuses. These findings support the hypothesis that thyroid hormone is important in modulating maturation of RAS and cardiovascular function in the late-gestation fetal sheep.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call