Abstract
Radioiodine uptake (RAIU) test with iodine-123 (Na[123I]I) or iodine-131 (Na[131I]I) enables accurate evaluation and quantification of iodine uptake and kinetics within thyroid cells. Thyroid Scintigraphy (TS) employing Na[123I]I or 99mTc-pertechnetate (Na[99mTc]TcO4) provides information regarding the function and topographical distribution of thyroid cells activity, including detection and localization of ectopic thyroid tissue. Destructive thyrotoxicosis is characterized by low RAIU with scintigraphically reduced radiotracer activity in the thyroid tissue, while productive thyrotoxicosis (i.e. hyperthyroidism “stricto sensu”) is characterized by high RAIU with scintigraphically diffuse (i.e. Graves’ Disease, GD and diffuse thyroid autonomy) or focal (i.e. autonomously functioning thyroid nodules, AFTN) overactivity. Accordingly, RAIU and/or TS are widely used to differentiate different causes of thyrotoxicosis. In addition, several radiopharmaceuticals are also available to help differentiate benign from malignant thyroid nodules and inform clinical decision-making: scintigraphic identification of AFTNs obviate fine-needle aspiration (FNA) biopsy, and [99mTc]Tc-hexakis-(2‑methoxy-2-isobutyl isonitrile ([99mTc]Tc-MIBI) and/or 18F-fluoro-d-glucose ([18F]FDG) may complement the work-up of cytologically indeterminate “cold” nodules for reducing the need for diagnostic lobectomies/thyroidectomies. Finally, RAIU studies are also useful for calculating the administered therapeutic activity of Na[131I]I to treat hyperthyroidism and euthyroid multinodular goiter. All considered, thyroid molecular imaging allows functional characterization of different thyroid diseases, even before clinical symptoms become manifest, and remains integral to the management of such conditions. Our present paper summarizes basic concepts, clinical applications, and potential developments of thyroid molecular imaging in patients affected by thyrotoxicosis and thyroid nodules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.