Abstract

A thrust stand is developed for measuring the pulsed thrust generated by low-thrust liquid pulsed rocket engines. It mainly consists of a thrust dynamometer, a base frame, a connecting frame, and a data acquisition and processing system. The thrust dynamometer assembled with shear mode piezoelectric quartz sensors is developed as the core component of the thrust stand. It adopts integral shell structure. The sensors are inserted into unique double-elastic-half-ring grooves with an interference fit. The thrust is transferred to the sensors by means of static friction forces of fitting surfaces. The sensors could produce an amount of charges which are proportional to the thrust to be measured. The thrust stand is calibrated both statically and dynamically. The in situ static calibration is performed using a standard force sensor. The dynamic calibration is carried out using pendulum-typed steel ball impact technique. Typical thrust pulse is simulated by a trapezoidal impulse force. The results show that the thrust stand has a sensitivity of 25.832 mV/N, a linearity error of 0.24% FSO, and a repeatability error of 0.23% FSO. The first natural frequency of the thrust stand is 1245 Hz. The thrust stand can accurately measure thrust waveform of each firing, which is used for fine control of on-orbit vehicles in the thrust range of 5-20 N with pulse frequency of 50 Hz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.