Abstract
This article explores the throttling aspect of the hybrid rocket motor through experiments using a lab-scale motor. The lab-scale motor utilizes a wax-Al based fuel and compressed air as the oxidizer. The oxidizer flow rate was modulated using a PID controller to study the closed-loop thrust control performance of the motor. Numerical simulations and cold flow tests were carried out to identify the suitable gains for the PID control algorithm. Pressure feedback was used in the control algorithm to obtain the closed-loop thrust control. The resultant closed-loop system followed the reference pressure accurately during the step input response test of the system. The maximum error in the observed chamber pressure was 1.86% for a reference pressure of 4.69 bar, which corresponds to a reference thrust of 117.6 N. The response of the system for a ramp input, with linear thrust variation from 78.4 N to 127.4 N, showed that the measured thrust followed the desired ramp profile with a root-mean-square error of 1.99 N. A ramp-down test with the same thrust range produced a root-mean-square error of 6.2 N.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.