Abstract

The human lumbar facet capsule, with the facet capsular ligament (FCL) that forms its primary constituent, is a common source of lower back pain. Prior studies on the FCL were limited to in-plane tissue behavior, but due to the presence of two distinct yet mechanically different regions, a novel out-of-plane study was conducted to further characterize the roles of the collagen and elastin regions. An experimental technique, called stretch-and-bend, was developed to study the tension-compression asymmetry of the FCL due to varying collagen fiber density throughout the thickness of the tissue. Each healthy excised cadaveric FCL sample was tested in four conditions depending on primary collagen fiber alignment and regional loading. Our results indicate that the FCL is stiffest when the collagen fibers (1) are aligned in the direction of loading, (2) are in tension, and (3) are stretched - 16% from its off-the-bone, undeformed state. An optimization routine was used to fit a four-parameter anisotropic, hyperplastic model to the experimental data. The average elastin modulus, E, and the average collagen fiber modulus, ξ, were 13.15 ± 3.59kPa and 18.68 ± 13.71MPa (95% CI), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.