Abstract

The facet capsular ligaments (FCLs) flank the spinous process on the posterior aspect of the spine. The lumbar FCL is collagenous, with collagen fibers aligned primarily bone-to-bone (medial-lateral) and experiences significant shear, especially during spinal flexion and extension. We characterized the mechanical response of the lumbar FCL to in-plane shear, and we evaluated that response in the context of the fiber architecture. In-plane shear tests with both positive and negative shear (i.e., corresponding to flexion and to extension) were performed on eight cadaveric human L4-L5 FCLs. Our most striking observation was subject-dependent asymmetry in the response. All samples showed a toe region of low stiffness, transitioning to greater stiffness at higher strains, for both shear directions. Different samples showed profoundly different transition strains, with some samples stiffening more rapidly in positive shear and some in negative shear. This unpredictable asymmetry, which did not correlate with age, side, or degeneration state, suggesting that collagen fibers in the FCL are sometimes aligned at a slight positive angle from the bone-to-bone axis and sometimes at a negative angle. Fitting the experimental data to a fiber-composite-based finite element model supported this idea, yielding optimal fits with positive or negative off-axis fiber directions (−40° to +40°). Subsequent examination of selected FCLs by small-angle x-ray scattering (SAXS) showed a similar variability in fiber direction. We conclude that small individual differences in lumbar FCL architecture may have a significant effect on lumbar FCL mechanics, especially at moderate strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.