Abstract

This paper studies the throughput maximization problem for a three-node relay channel with direct link and non-ideal circuit power. The relay operates in a half- duplex manner, and the decode-and-forward (DF) relaying is adopted. Considering the extra power consumption by the circuits, the optimal power allocations over infinite time horizon are investigated. First, two special scenarios, i.e., the direct link transmission (only use the direct link to transmit) and the relay assisted transmission (the source and the relay transmit with equal probability), are studied. By solving two non-convex optimization problems, the solutions show that the source and the relay transmit with certain probability, which is determined by the average power budgets, circuit power consumptions, and channel gains. Then, based on the above results, the optimal power allocation for the original throughput maximization problem is investigated, which is shown to be a mixed transmission scheme between the direct link transmission and the relay assisted transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.