Abstract
IEEE 802.11ah has recently emerged as a promising standard for enabling massive machine-to-machine (M2M) communication. In order to support uplink data transmission from dense machine type clients (such as smart meters, IoT end nodes etc.), 802.11ah relies upon the restricted access window (RAW) based Medium Access Control (MAC) protocol. The underlying motivation behind this protocol is to reduce the contention for spectrum access among a large number of devices. The nodes contend with each other in their assigned RAW slot using Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). In each RAW slot, the throughput depends upon the number of nodes. Current studies have suggested that the duration of each RAW slot should be the same in the entire RAW frame. However in this paper, we argue that the duration of each RAW slot should be chosen according to the size of the group. We present a model where a RAW frame is divided into two sub-frames and the duration of RAW slots in each sub-frame is chosen according to the size of the group. With the help of an analytical framework, we demonstrate that the throughput under our proposed scheme can be significantly enhanced when compared to a conventional implementation.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have