Abstract

We briefly review the concept of a parallel `mirror' world which has the same particle physics as the observable world and couples to the latter by gravity and perhaps other very weak forces. The nucleosynthesis bounds demand that the mirror world should have a smaller temperature than the ordinary one. By this reason its evolution should substantially deviate from the standard cosmology as far as the crucial epochs like baryogenesis, nucleosynthesis etc. are concerned. In particular, we show that in the context of certain baryogenesis scenarios, the baryon asymmetry in the mirror world should be larger than in the observable one. Moreover, we show that mirror baryons could naturally constitute the dominant dark matter component of the Universe, and discuss its cosmological implications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.