Abstract

There can exist a parallel ‘mirror’ world which has the same particle physics as the observable world and couples the latter only gravitationally. The nucleosynthesis bounds demand that the mirror sector should have a smaller temperature than the ordinary one. By this reason its evolution should be substantially deviated from the standard cosmology as far as the crucial epochs like baryogenesis, nucleosynthesis etc. are concerned. Starting from an inflationary scenario which could explain the different initial temperatures of the two sectors, we study the time history of the early mirror universe. In particular, we show that in the context of the GUT or electroweak baryogenesis scenarios, the baryon asymmetry in the mirror world should be larger than in the observable one and in fact the mirror baryons could provide the dominant dark matter component of the universe. In addition, analyzing the nucleosynthesis epoch, we show that the mirror helium abundance should be much larger than that of ordinary helium. The implications of the mirror baryons representing a kind of self-interacting dark matter for the large scale structure formation, the CMB anysotropy, the galactic halo structures, microlensing, etc. are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.