Abstract

Zinc induced COVID-19 thrombosis prevention and anti-thrombus formation have been established by that zinc promotes COVID-19 thrombosis prevention and anti-thrombus formation and zinc ions-induced activated anti-thrombus activity is proceeded to prevent acute ischemic stroke among COVID-19 patients Zinc can reduce neurological outcomes in COVID-19 patients that Zn2+ promotes inflammatory cytokine as a neurodegenerative disorder and the coronaviruses can affect the nervous system through blood circulation, causing neuro-inflammation. Zinc supplementation affects bronchial mucosal epithelial integrity, both under normal and zinc deficient conditions. The other, zinc ions inhibit COVID-19 lung inflammation that zinc ions promote platelet activation function that inhibits pulmonary thromboembo-lism, in which platelets could respond to changes in extracellular and intracellular Zn2+ concentration. Zn2+ plays a major role in the regulation of coagulation that zinc inhibit blood coagulation against COVID-19 infection, in which Zn2+ can modulate platelet and coagulation activation pathways, including fibrin formation that the release of ionic Zn2+ store from secretory granules upon platelet activation contributes to the procoagulant role of Zn2+ in platelet-dependent fibrin formation. Zinc-induced platelet aggregation, low concentrations of ZnSO4 and zinc chelation involve platelet activation and potentiated platelet aggregation. Persistent zinc intake for severe aggravation of COVID-19 has been suggested to be 8–11 mg/day for adults (tolerable upper intake level 40 mg/day) and suggesting that a zinc intake of 30–70 mg/day might aid in the RNA viruses control. Thus, zinc ions can inhibit inflammation, platelet behaviour function, blood coagulation, and neurological thrombus formation during ROS production and excessive oxidative stress against COVID-19 infection. Zn2+ ions-binding with many proteins-molecular mechanism has been clarified that Zn2+ ions may be bound with COVID-19 inflammatory, platelet, coagulation, thrombus proteins by Zn2+ ions-centered tetrahedrally binding protein molecular coordination pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call