Abstract

Irradiation of O2 dispersed in solid Ne with ultraviolet light produced infrared absorption lines of O3 and emission lines from atomic O (1D2 → 3P1,2), molecular O2 (A' 3Δu → X 3Σg) and radical OH (A 2Σ+ → X 2ΠI) in the visible and near-ultraviolet regions. The threshold wavelength for the formation of O3 was determined to be 200 ± 4 nm, corresponding to energy 6.20 ± 0.12 eV, which is hence the threshold for dissociation of O2. The thresholds of emission from excited O (1D2), O2 (A' 3Δu) and OH (A 2Σ+) were all observed to be 200 ± 4 nm, the same as for the formation of O3 in this photochemical system. The results indicate that, once O3 was generated, it was readily photolyzed to produce the long-lived atom O (1D2). Further reactions of O (1D2) with O3 produced excited O2 (A' 3Δu); reaction with water yielded radical OH (A 2Σ+). These results enhance our understanding of the evolution of the transformation of oxygen and open a window for the understanding of complicated processes in the solid phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.