Abstract

Image segmentation gained significant importance in recent years. The goal of segmentation is partitioning an image into distinct regions containing each pixel with similar attributes. Several Image segmentation techniques exist based on thresholding and clustering. Image segmentation based on thresholding is typically doesn’t find any objects and bounds (lines, curves, etc.) in image. To boost the segmentation performance based on thresholding strategies, a unique strategy that integrates the spacial information between pixel’s is designed. The proposed strategy utilizes pixel’s grey level Gradient magnitude and gray level spacial correlation at intervals a part to construct a unique two dimensional bar graph, known as GLGM & GLSC. This technique is valid through segmenting many real world pictures. Experimental results proved this method outperforms several existing Thresholding strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.