Abstract

An analytical model for the subthreshold regime of operation of short-channel MOSFETs is presented, and expressions for the threshold-voltage shift associated with the drain-induced barrier lowering (DIBL) caused by the application of a drain bias are developed. The amount of drain-bias-induced depletion charge in the channel is estimated, and an expression for the distribution of this charge along the channel is developed. From this distribution, it is possible to find the lowering of the potential barrier between the source and the channel, and the corresponding threshold-voltage shift. The results are compared with experimental data for deep-submicrometer NMOS devices. Expressions for the subthreshold current and for a generalized unified charge control model (UCCM) for short-channel MOSFETs are presented. The theory is applicable to deep-submicrometer devices with gate lengths larger than 0.1 mu m. The model is suitable for implementation in circuit simulators.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.