Abstract
The development of novel materials with coexisting volatile threshold and non-volatile memristive switching is crucial for neuromorphic applications. Hence, the aim of this work was to investigate the memristive properties of oxides in a Hf-Nb thin-film combinatorial system deposited by sputtering on Si substrates. The active layer was grown anodically on each Hf-Nb alloy from the library, whereas Pt electrodes were deposited as the top electrodes. The devices grown on Hf-45 at.% Nb alloys showed improved memristive performances reaching resistive state ratios up to a few orders of magnitude and achieving multi-level switching behavior while consuming low power in comparison with memristors grown on pure metals. The coexistence of threshold and resistive switching is dependent upon the current compliance regime applied during memristive studies. Such behaviors were explained by the structure of the mixed oxides investigated by TEM and XPS. The mixed oxides, with HfO2 crystallites embedded in quasi amorphous and stoichiometrically non-uniform Nb oxide regions, were found to be favorable for the formation of conductive filaments as a necessary step toward memristive behavior. Finally, metal-insulator-metal structures grown on the respective alloys can be considered as relevant candidates for the future fabrication of anodic high-density in-memory computing systems for neuromorphic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.