Abstract

Volatile threshold switching (TS) and non‐volatile memory switching (MS) are two typical resistive switching (RS) phenomena in oxides, which could form the basis for memory, analog circuits, and neuromorphic applications. Interestingly, TS and MS can be coexistent and converted in a single device under the suitable external excitation. However, the origin of the transition from TS to MS is still unclear due to the lack of direct experimental evidence. Here, conversion between TS and MS induced by conductive filament (CF) morphology in Ag/SiO2/Pt device is directly observed using scanning electron microscopy and high‐resolution transmission electron microscopy. The MS mechanism is related to the formation and dissolution of CF consisting of continuous Ag nanocrystals. The TS originates from discontinuous CF with isolated Ag nanocrystals. The results of current–voltage fitting and Kelvin probe force microscopy further indicate that the TS mechanism is related to the modulation of the tunneling barrier between Ag nanocrystals in CF. This work provides clearly experimental evidence to deepen understanding of the mechanism for RS in oxide‐electrolyte‐based resistive switching memory, contributing to better control of the two RS behaviors to establish high‐performance emerging devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.