Abstract
The answer to the question of how the nervous system controls multiple muscles and body segments while solving the redundancy problem in choosing a unique action from the set of many possible actions is still a matter of controversy. In an attempt to clarify the answer, we review data showing that motor actions emerge from central resetting of the threshold position of appropriate body segments, i.e. the virtual position at which muscles are silent but deviations from it will elicit activity and resistive forces (threshold position control). The difference between the centrally-set threshold position and the sensory-signaled actual position is responsible for the activation of neuromuscular elements and interactions between them and the environment. These elements tend to diminish the evoked activity and interactions by minimizing the gap between the actual position and the threshold position (the principle of minimal interaction). Threshold control per se does not solve the redundancy problem: it only limits the set of possible actions. The principle of minimal interaction implies that the system relies on the natural capacity of neuromuscular elements to interact between themselves and with the environment to reduce this already restricted set to a unique action, thus solving the redundancy problem in motor control. This theoretical framework appears to be helpful in the explanation of the control and production of a variety of actions (reaching movements, specification of different hand configurations, grip force generation, and whole-body movements such as sit-to-stand or walking). Experimental tests of this theory are provided. The prediction that several types of neurons specify referent control variables for motor actions may be tested in future studies. The theory may also be advanced by applying the notion of threshold control to perception and cognition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have